SARS-CoV-2 Antibody Testing in Health Care Workers: A Comparison of the Clinical Performance of Three Commercially Available Antibody Assays

Microbiol Spectr. 2021 Oct 31;9(2):e0039121. doi: 10.1128/Spectrum.00391-21. Epub 2021 Sep 29.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies are an excellent indicator of past COVID-19 infection. As the COVID-19 pandemic progresses, retained sensitivity over time is an important quality in an antibody assay that is to be used for the purpose of population seroprevalence studies. We compared 5,788 health care worker (HCW) serum samples by using two serological assays (Abbott SARS-CoV-2 anti-nucleocapsid immunoglobulin G (IgG) and Roche anti-SARS-CoV-2 anti-nucleocapsid total antibody) and a subset of samples (all Abbott assay positive or grayzone, n = 485) on Wantai SARS-CoV-2 anti-spike antibody enzyme-linked immunosorbent assay (ELISA). For 367 samples from HCW with a previous PCR-confirmed SARS-CoV-2 infection, we correlated the timing of infection with assay results. Overall, seroprevalence was 4.2% on Abbott and 9.5% on Roche. Of those with previously confirmed infection, 41% (150/367) and 95% (348/367) tested positive on Abbott and Roche, respectively. At 21 weeks (150 days) after confirmed infection, positivity on Abbott started to decline. Roche positivity was retained for the entire study period (33 weeks). Factors associated (P ≤ 0.050) with Abbott seronegativity in those with previous PCR-confirmed infection included sex (odds ratio [OR], 0.30 male ; 95% confidence interval [CI], 0.15 to 0.60), symptom severity (OR 0.19 severe symptoms; 95% CI, 0.05 to 0.61), ethnicity (OR, 0.28 Asian ethnicity; 95% CI, 0.12 to 0.60), and time since PCR diagnosis (OR, 2.06 for infection 6 months previously; 95% CI, 1.01 to 4.30). Wantai detected all previously confirmed infections. In our population, Roche detected antibodies up to at least 7 months after natural infection with SARS-CoV-2. This finding indicates that the Roche total antibody assay is better suited than Abbott IgG assay to population-based studies. Wantai demonstrated high sensitivity, but sample selection was biased. The relationship between serological response and functional immunity to SARS-CoV-2 infection needs to be delineated. IMPORTANCE As the COVID-19 pandemic progresses, retained sensitivity over time is an important quality in an antibody assay that is to be used for the purpose of population seroprevalence studies. There is a relative paucity of published literature in this field to help guide public health specialists when planning seroprevalence studies. In this study, we compared results of 5,788 health care worker blood samples tested by using two assays (Roche and Elecsys, anti-nucleocapsid antibody) and by testing a subset on a third assay (Wantai enzyme-linked immunosorbent assay [ELISA] anti-spike antibody). We found significant differences in the performance of these assays, especially with distance in time from PCR-confirmed COVID-19 infection, and we feel these results may significantly impact the choice of assay for others conducting similar studies.

Keywords: Abbott Architect SARS-CoV-2 IgG; COVID-19 serological assays; Roche Elecsys SARS-CoV-2 panantibody; SARS-CoV-2 serological assay; SARS-CoV-2 seroprevalence; antibody assays SARS-CoV-2.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Antibodies, Viral / blood*
  • COVID-19 / diagnosis*
  • COVID-19 Serological Testing / methods*
  • Coronavirus Nucleocapsid Proteins / immunology*
  • Cross-Sectional Studies
  • Enzyme-Linked Immunosorbent Assay
  • Female
  • Health Personnel / statistics & numerical data
  • Humans
  • Immunoglobulin G / blood
  • Male
  • Middle Aged
  • Phosphoproteins / immunology
  • SARS-CoV-2 / immunology*
  • Sensitivity and Specificity
  • Seroepidemiologic Studies
  • Spike Glycoprotein, Coronavirus / immunology*
  • Young Adult

Substances

  • Antibodies, Viral
  • Coronavirus Nucleocapsid Proteins
  • Immunoglobulin G
  • Phosphoproteins
  • Spike Glycoprotein, Coronavirus
  • nucleocapsid phosphoprotein, SARS-CoV-2
  • spike protein, SARS-CoV-2