Background and aims: Insulin resistance contributes to the development of type 2 diabetes (T2D) and is also a cardiovascular risk factor. The aim of this study was to investigate the potential association between insulin resistance measured by estimated glucose disposal rate (eGDR) and risk of stroke and mortality thereof in people with T2D.
Materials and methods: Nationwide population based observational cohort study that included all T2D patients from the Swedish national diabetes registry between 2004 and 2016 with full data on eGDR and categorised as following: < 4, 4-6, 6-8, and ≥ 8 mg/kg/min. We calculated crude incidence rates and 95% confidence intervals (CIs) and used multiple Cox regression to estimate hazard ratios (HRs) to assess the association between the risk of stroke and death, according to the eGDR categories in which the lowest category < 4 (i.e., highest grade of insulin resistance), served as a reference. The relative importance attributed of each factor in the eGDR formula was measured by the R2 (± SE) values calculating the explainable log-likelihoods in the Cox regression.
Results: A total of 104 697 T2D individuals, 44.5% women, mean age of 63 years, were included. During a median follow up-time of 5.6 years, 4201 strokes occurred (4.0%). After multivariate adjustment the HRs (95% CI) for stroke in patients with eGDR categories between 4-6, 6-8 and > 8 were: 0.77 (0.69-0.87), 0.68 (0.58-0.80) and 0.60 (0.48-0.76), compared to the reference < 4. Corresponding numbers for the risk of death were: 0.82 (0.70-0.94), 0.75 (0.64-0.88) and 0.68 (0.53-0.89). The attributed relative risk R2 (± SE) for each variable in the eGDR formula and stroke was for: hypertension (0.045 ± 0.0024), HbA1c (0.013 ± 0.0014), and waist (0.006 ± 0.0009), respectively.
Conclusion: A low eGDR (a measure of insulin resistance) is associated with an increased risk of stroke and death in individuals with T2D. The relative attributed risk was most important for hypertension.
Keywords: All-cause mortality; Estimated glucose disposal rate; Insulin resistance; Stroke; Type 2 diabetes.
© 2021. The Author(s).