Multi-Targeted Molecular Docking, Pharmacokinetics, and Drug-Likeness Evaluation of Okra-Derived Ligand Abscisic Acid Targeting Signaling Proteins Involved in the Development of Diabetes

Molecules. 2021 Oct 1;26(19):5957. doi: 10.3390/molecules26195957.

Abstract

Diabetes mellitus is a global threat affecting millions of people of different age groups. In recent years, the development of naturally derived anti-diabetic agents has gained popularity. Okra is a common vegetable containing important bioactive components such as abscisic acid (ABA). ABA, a phytohormone, has been shown to elicit potent anti-diabetic effects in mouse models. Keeping its anti-diabetic potential in mind, in silico study was performed to explore its role in inhibiting proteins relevant to diabetes mellitus- 11β-hydroxysteroid dehydrogenase (11β-HSD1), aldose reductase, glucokinase, glutamine-fructose-6-phosphate amidotransferase (GFAT), peroxisome proliferator-activated receptor-gamma (PPAR-gamma), and Sirtuin family of NAD(+)-dependent protein deacetylases 6 (SIRT6). A comparative study of the ABA-protein docked complex with already known inhibitors of these proteins relevant to diabetes was compared to explore the inhibitory potential. Calculation of molecular binding energy (ΔG), inhibition constant (pKi), and prediction of pharmacokinetics and pharmacodynamics properties were performed. The molecular docking investigation of ABA with 11-HSD1, GFAT, PPAR-gamma, and SIRT6 revealed considerably low binding energy (ΔG from -8.1 to -7.3 Kcal/mol) and predicted inhibition constant (pKi from 6.01 to 5.21 µM). The ADMET study revealed that ABA is a promising drug candidate without any hazardous effect following all current drug-likeness guidelines such as Lipinski, Ghose, Veber, Egan, and Muegge.

Keywords: Diabetes mellitus; abscisic acid; anti-diabetic; molecular docking; nutraceuticals; okra; phytohormones.

MeSH terms

  • 11-beta-Hydroxysteroid Dehydrogenase Type 1 / antagonists & inhibitors
  • 11-beta-Hydroxysteroid Dehydrogenase Type 1 / chemistry
  • 11-beta-Hydroxysteroid Dehydrogenase Type 1 / metabolism
  • Abelmoschus / chemistry*
  • Abscisic Acid / chemistry
  • Abscisic Acid / metabolism
  • Abscisic Acid / pharmacokinetics
  • Abscisic Acid / pharmacology*
  • Aldehyde Reductase / chemistry
  • Aldehyde Reductase / metabolism
  • Computer Simulation
  • Diabetes Mellitus / metabolism*
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology
  • Glucokinase / chemistry
  • Glucokinase / metabolism
  • Glutamine / metabolism
  • Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing) / metabolism
  • Glycogen Synthase Kinase 3 / chemistry
  • Glycogen Synthase Kinase 3 / metabolism
  • Humans
  • Hypoglycemic Agents / chemistry
  • Hypoglycemic Agents / pharmacology*
  • Molecular Docking Simulation
  • PPAR gamma / chemistry
  • PPAR gamma / metabolism
  • Proteins / chemistry
  • Proteins / metabolism*
  • Sirtuins / chemistry
  • Sirtuins / metabolism

Substances

  • Enzyme Inhibitors
  • Hypoglycemic Agents
  • PPAR gamma
  • Proteins
  • Glutamine
  • Abscisic Acid
  • 11-beta-Hydroxysteroid Dehydrogenase Type 1
  • Aldehyde Reductase
  • Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)
  • Glucokinase
  • Glycogen Synthase Kinase 3
  • SIRT6 protein, human
  • Sirtuins