Stimulation of the dorsal root ganglion using an Injectrode®

J Neural Eng. 2021 Nov 4;18(5):10.1088/1741-2552/ac2ffb. doi: 10.1088/1741-2552/ac2ffb.

Abstract

Objective. The goal of this work was to compare afferent fiber recruitment by dorsal root ganglion (DRG) stimulation using an injectable polymer electrode (Injectrode®) and a more traditional cylindrical metal electrode.Approach. We exposed the L6 and L7 DRG in four cats via a partial laminectomy or burr hole. We stimulated the DRG using an Injectrode or a stainless steel (SS) electrode using biphasic pulses at three different pulse widths (80, 150, 300μs) and pulse amplitudes spanning the range used for clinical DRG stimulation. We recorded antidromic evoked compound action potentials (ECAPs) in the sciatic, tibial, and common peroneal nerves using nerve cuffs. We calculated the conduction velocity of the ECAPs and determined the charge-thresholds and recruitment rates for ECAPs from Aα, Aβ, and Aδfibers. We also performed electrochemical impedance spectroscopy measurements for both electrode types.Main results. The ECAP thresholds for the Injectrode did not differ from the SS electrode across all primary afferents (Aα, Aβ, Aδ) and pulse widths; charge-thresholds increased with wider pulse widths. Thresholds for generating ECAPs from Aβfibers were 100.0 ± 32.3 nC using the SS electrode, and 90.9 ± 42.9 nC using the Injectrode. The ECAP thresholds from the Injectrode were consistent over several hours of stimulation. The rate of recruitment was similar between the Injectrodes and SS electrode and decreased with wider pulse widths.Significance. The Injectrode can effectively excite primary afferents when used for DRG stimulation within the range of parameters used for clinical DRG stimulation. The Injectrode can be implanted through minimally invasive techniques while achieving similar neural activation to conventional electrodes, making it an excellent candidate for future DRG stimulation and neuroprosthetic applications.

Keywords: Injectrode; biomaterials; dorsal root ganglion; electrical stimulation; neuromodulation; neuroprostheses; pain.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Action Potentials
  • Electric Stimulation / methods
  • Electrodes
  • Evoked Potentials
  • Ganglia, Spinal* / physiology
  • Peroneal Nerve*