Background: Obesity is a risk factor for asthma, and obese asthmatic individuals are more likely to have severe, steroid-insensitive disease. How obesity affects the pathogenesis and severity of asthma is poorly understood. Roles for increased inflammasome-mediated neutrophilic responses, type 2 immunity, and eosinophilic inflammation have been described.
Objective: We investigated how obesity affects the pathogenesis and severity of asthma and identified effective therapies for obesity-associated disease.
Methods: We assessed associations between body mass index and inflammasome responses with type 2 (T2) immune responses in the sputum of 25 subjects with asthma. Functional roles for NLR family, pyrin domain-containing (NLRP) 3 inflammasome and T2 cytokine responses in driving key features of disease were examined in experimental high-fat diet-induced obesity and asthma.
Results: Body mass index and inflammasome responses positively correlated with increased IL-5 and IL-13 expression as well as C-C chemokine receptor type 3 expression in the sputum of subjects with asthma. High-fat diet-induced obesity resulted in steroid-insensitive airway hyperresponsiveness in both the presence and absence of experimental asthma. High-fat diet-induced obesity was also associated with increased NLRP3 inflammasome responses and eosinophilic inflammation in airway tissue, but not lumen, in experimental asthma. Inhibition of NLRP3 inflammasome responses reduced steroid-insensitive airway hyperresponsiveness but had no effect on IL-5 or IL-13 responses in experimental asthma. Depletion of IL-5 and IL-13 reduced obesity-induced NLRP3 inflammasome responses and steroid-insensitive airway hyperresponsiveness in experimental asthma.
Conclusion: We found a relationship between T2 cytokine and NLRP3 inflammasome responses in obesity-associated asthma, highlighting the potential utility of T2 cytokine-targeted biologics and inflammasome inhibitors.
Keywords: Asthma; IL-13; IL-5; NLRP3 inflammasomes; obesity.
Copyright © 2021 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.