Changes of Metabolic Biomarker Levels upon One-Year Anti-TNF-α Therapy in Rheumatoid Arthritis and Ankylosing Spondylitis: Associations with Vascular Pathophysiology

Biomolecules. 2021 Oct 18;11(10):1535. doi: 10.3390/biom11101535.

Abstract

Background: Cardiovascular (CV) morbidity, mortality, and metabolic syndrome are associated with rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Here, lipids and other metabolic markers in relation to vascular function and clinical markers were evaluated in RA and AS patients undergoing one-year anti-TNF therapy.

Patients and methods: Fifty-three patients including 36 RA patients treated with either etanercept (ETN) or certolizumab pegol (CZP) and 17 AS patients treated with ETN were included in a 12-month follow-up study. Various lipids, paraoxonase (PON) and arylesterase (ARE) activities, myeloperoxidase (MPO) and adipokine levels were determined overtime. Ultrasonography was performed to determine flow-mediated vasodilation (FMD), common carotid intima-media thickness (ccIMT), and arterial pulse-wave velocity (PWV) in all patients. All assessments were performed at baseline and 6 and 12 months after treatment initiation.

Results: Anti-TNF therapy decreased ARE activity, MPO, adiponectin, and chemerin levels after 12 months (p < 0.05). Lipids, PON activity, and leptin remained unchanged. Regression analyses suggested variable associations of IMT, PWV, and FMD with ARE, MPO, leptin, and lipids (p < 0.05). On the other hand, these metabolic parameters were significantly associated with disease duration, CV history, CRP, obesity, PWV, and IMT (p < 0.05). One-year anti-TNF treatment together with baseline leptin (p = 0.039) or CRP (p = 0.016) levels determined 12 months of lipid changes overtime. TNF inhibition together with baseline disease activity determined ARE activity changes (p = 0.046). Anti-TNF therapy and baseline chemerin levels determined IMT changes overtime (p = 0.003).

Conclusions: Assessment of various metabolic parameters together with disease activity, CRP, and ultrasound-based techniques may exert additional value in determining CV burden and in monitoring the effects of biologics on preclinical vascular pathophysiology.

Keywords: adipokines; ankylosing spondylitis; biologic therapy; lipids; metabolic biomarkers; rheumatoid arthritis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Arthritis, Rheumatoid / blood
  • Arthritis, Rheumatoid / complications
  • Arthritis, Rheumatoid / drug therapy*
  • Arthritis, Rheumatoid / metabolism
  • Aryldialkylphosphatase / blood
  • Biomarkers / blood
  • C-Reactive Protein / metabolism*
  • Carboxylic Ester Hydrolases / blood
  • Carotid Intima-Media Thickness
  • Certolizumab Pegol / administration & dosage
  • Etanercept / administration & dosage
  • Female
  • Heart Disease Risk Factors
  • Humans
  • Lipid Metabolism / drug effects
  • Lipids / blood
  • Male
  • Middle Aged
  • Obesity / blood
  • Obesity / complications
  • Obesity / drug therapy*
  • Peroxidase / blood
  • Spondylitis, Ankylosing / blood
  • Spondylitis, Ankylosing / complications
  • Spondylitis, Ankylosing / drug therapy*
  • Tumor Necrosis Factor-alpha / antagonists & inhibitors
  • Tumor Necrosis Factor-alpha / genetics*

Substances

  • Biomarkers
  • Lipids
  • Tumor Necrosis Factor-alpha
  • C-Reactive Protein
  • Peroxidase
  • Carboxylic Ester Hydrolases
  • arylesterase
  • Aryldialkylphosphatase
  • Etanercept
  • Certolizumab Pegol