Synthesis, Characterization, and Cytotoxicity Evaluation of Polyethylene Glycol-Coated Iron Oxide Nanoparticles for Radiotherapy Application

J Med Phys. 2021 Jul-Sep;46(3):154-161. doi: 10.4103/jmp.JMP_102_20. Epub 2021 Sep 8.

Abstract

Background: Treatment methods for cancer that are widely being utilized affect both normal and cancerous cells. We report synthesis polyethylene glycol (PEG)-coated Fe3O4 nanoparticles (NPs) and its characteristic properties and appraise its potential as a promising radiation sensitizer candidate in radiotherapy that improves cancer treatment and reduces side effects of radiation.

Materials and methods: PEG-coated Fe3O4 NPs were synthesized by chemical coprecipitation method and characterized by studying their size, structure, functional group, stability, magnetization, and cytotoxicity using different techniques. X-ray powder diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis results show that Fe3O4 NPs have been functionalized with PEG molecules during the course of synthesis.

Results: Synthesized NPs have good stability based on zeta-potential study. Dynamic light-scattering results reveal that PEG-coated Fe3O4 has a greater hydrodynamic size than bare Fe3O4. Transmission electron microscopy (TEM) micrograph exhibited that NPs are roughly spherical with size in range of 10-20 nm. Saturation magnetization value of PEG-coated and bare Fe3O4 also confirms coating and shows superparamagnetic behavior. Cytotoxicity evaluation study indicated that PEG-coated Fe3O4 is biocompatible on L929 and toxic on Michigan Cancer Foundation-7 (MCF-7) (breast cancer cells).

Conclusion: These characterized properties of PEG-coated Fe3O4 NPs show that it could be used as a potential radiosensitizer candidate in radiotherapy to significantly improve cancer treatment and minimize painful side effects of radiation.

Keywords: Fe3O4; MTT assay; polyethylene glycol; radiotherapy sensitizer.