Importance: Neuroendocrine neoplasms (NENs) have historically been grouped homogenously in clinical trials, despite their heterogeneity. Given the adoption of a more advanced pathologic classification system and drug licensure of several targeted therapies over the last decade, information is needed on whether study characteristics of NEN studies have evolved.
Objective: To assess changes in study design, eligibility, accrual, sponsorship, and outcomes between phase II or III NEN clinical trials that began enrollment from 2000 to 2009 vs 2010 to 2020.
Design, setting, and participants: This quality improvement study used a systematic survey of completed studies published between January 1, 2000, and December 31, 2020. Therapeutic phase II and III NEN studies were identified through a database search of Medline (via PubMed), EMBASE (OvidSP), Cumulative Index of Nursing and Allied Health Literature (EBSCOhost), Web of Science (Clarivate), Cochrane Database of Systematic Reviews (Wiley), ClinicalTrials.gov (National Institutes of Health), EU Clinical Trials Register, and National Cancer Institute Clinical Trials. Data were analyzed between March and June 2021.
Main outcomes and measures: Study characteristic proportions between the 2 enrollment periods.
Results: Of 3243 identified studies, 119 studies met criteria for inclusion, of which 117 studies (54 studies that began enrollment between 2000-2009 and 63 studies that began enrollment between 2010-2020) included exact dates of enrollment and were compared. Studies that began enrollment after 2010, compared with studies that began enrollment from 2000 to 2009, were less likely to include all NENs (13 studies [21%] vs 34 studies [63%]; P < .001) and more likely to include select NENs (eg, gastrointestinal neuroendocrine tumors, 25 studies [40%] vs 11 studies [20%]; P = .02; pancreatic neuroendocrine tumors, 32 studies [51%] vs 16 studies [30%]; P = .02). Studies that began enrollment after 2010, compared with studies that began enrollment from 2000 to 2009, were more likely to specify tumor differentiation (59 studies [98%] vs 34 studies [63%]; P < .001) or Ki-67 index (23 studies [38%] vs 5 studies [9%]; P < .001) in inclusion criteria. Studies that began enrollment after 2010, compared with studies that began enrollment from 2000 to 2009, were more likely to use progression-free survival (22 studies [35%] vs 9 studies [18%]; P = .04) rather than objective response rate (19 studies [30%] vs 27 studies [53%]; P = .01) as a primary or coprimary end point.
Conclusions and relevance: These findings suggest that NEN trials enrolling over the last decade were more focused on select tumor populations, compared with studies that began enrollment before 2010. Despite this shift, more than 20% of studies still included all NENs. Studying novel agents in specific disease populations may enhance drug development in the field.