Targeting Oncogenic Src Homology 2 Domain-Containing Phosphatase 2 (SHP2) by Inhibiting Its Protein-Protein Interactions

J Med Chem. 2021 Nov 11;64(21):15973-15990. doi: 10.1021/acs.jmedchem.1c01371. Epub 2021 Oct 29.

Abstract

We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Binding Sites
  • Mutation
  • Oncogenes*
  • Protein Binding
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11 / antagonists & inhibitors*
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11 / metabolism
  • Signal Transduction
  • Zebrafish / embryology
  • src Homology Domains / drug effects*

Substances

  • Protein Tyrosine Phosphatase, Non-Receptor Type 11