ND3 Cys39 in complex I is exposed during mitochondrial respiration

Cell Chem Biol. 2022 Apr 21;29(4):636-649.e14. doi: 10.1016/j.chembiol.2021.10.010. Epub 2021 Nov 4.

Abstract

Mammalian complex I can adopt catalytically active (A-) or deactive (D-) states. A defining feature of the reversible transition between these two defined states is thought to be exposure of the ND3 subunit Cys39 residue in the D-state and its occlusion in the A-state. As the catalytic A/D transition is important in health and disease, we set out to quantify it by measuring Cys39 exposure using isotopic labeling and mass spectrometry, in parallel with complex I NADH/CoQ oxidoreductase activity. To our surprise, we found significant Cys39 exposure during NADH/CoQ oxidoreductase activity. Furthermore, this activity was unaffected if Cys39 alkylation occurred during complex I-linked respiration. In contrast, alkylation of catalytically inactive complex I irreversibly blocked the reactivation of NADH/CoQ oxidoreductase activity by NADH. Thus, Cys39 of ND3 is exposed in complex I during mitochondrial respiration, with significant implications for our understanding of the A/D transition and the mechanism of complex I.

Keywords: Cys39; NADH:ubiquinone oxidoreductase; active/deactive transition; complex I; ischemia-reperfusion (IR) injury; mitochondria; redox regulation; reverse electron transport (RET).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Catalysis
  • Electron Transport Complex I* / metabolism
  • Mammals / metabolism
  • Mitochondria / metabolism
  • NAD*
  • Respiration

Substances

  • NAD
  • Electron Transport Complex I