In vivo application of an implantable tri-anchored methylene blue-based electrochemical pH sensor

Biosens Bioelectron. 2022 Feb 1:197:113728. doi: 10.1016/j.bios.2021.113728. Epub 2021 Nov 1.

Abstract

The development of robust implantable sensors is important in the successful advancement of personalised medicine as they have the potential to provide in situ real-time data regarding the status of health and disease and the effectiveness of treatment. Tissue pH is a key physiological parameter and herein, we report the design, fabrication, functionalisation, encapsulation and protection of a miniaturised, self-contained, electrochemical pH sensor system and characterisation of sensor performance. Notably for the first time in this environment the pH sensor was based on a methylene blue redox reporter which showed remarkable robustness, accuracy and sensitivity. This was achieved by encapsulation of a self-assembled monolayer containing methylene blue entrapped within a Nafion layer. Another powerful feature was the incorporation, within the same implanted device, of a fabricated on-chip Ag/AgCl reference electrode - vital in any electrochemical sensor, but often ignored. When utilised in vivo, the sensor allowed accurate tracking of externally induced pH changes within a naturally occurring ovine lung cancer model, and correlated well with single point laboratory measurements made on extracted arterial blood, whilst enabling in vivo time-dependent measurements. The sensors functioned robustly whilst implanted, and maintained in vitro function once extracted and together, these results demonstrate proof-of-concept of the ability to sense real-time intratumoral tissue pH changes in vivo.

Keywords: Implantable; Methylene blue; Microfabrication; Sensor; Tumour; pH.

MeSH terms

  • Animals
  • Biosensing Techniques*
  • Electrochemical Techniques
  • Hydrogen-Ion Concentration
  • Methylene Blue*
  • Oxidation-Reduction
  • Sheep

Substances

  • Methylene Blue