Background: Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disorder characterized by kidney and extra-renal complications due to the accumulation of cystine crystals in various tissues and organs. Herein, we describe the early neuromuscular complications in a cohort of pediatric nephropathic cystinosis patients.
Methods: We prospectively evaluated the clinical, biochemical, and neurophysiological data of 15 cystinosis patients. Neurophysiological evaluation was performed to confirm or exclude presence of neuropathy and/or myopathy.
Results: Patients' age ranged between 20 and 216 months at time of examination. Nine patients were males. Three patients had early abnormal neurophysiological features consistent with neuromuscular involvement (clinically asymptomatic proximal myopathy with a patchy distribution in one patient and isolated asymptomatic sensory nerve conduction changes in two patients). A fourth patient had mixed abnormal motor and sensory axonal neuropathic changes associated with overt clinical features (predominantly motor symptoms). Patients with abnormal neuromuscular features were significantly older in age than the unaffected group (P = 0.005) and had a diagnosis of cystinosis with subsequent cysteamine therapy at a significantly older age than the unaffected group (P = 0.027 and 0.001, respectively).
Conclusions: We expanded the recognized phenotypes of cystinosis neuromuscular complications with early proximal skeletal myopathy and symptomatic motor and sensory axonal neuropathy. Early asymptomatic neuromuscular complications could develop in pediatric patients and would require neurophysiological studies for early detection prior to development of overt clinical manifestations. Prompt diagnosis and timely initiation of cysteamine therapy with recommended dose can delay the development of neuromuscular complications. A higher resolution version of the Graphical abstract is available as Supplementary information.
Keywords: Cysteamine; Myopathy; Nephropathic cystinosis; Nerve conduction studies/electromyography; Neuromuscular; Neuropathy.
© 2021. The Author(s), under exclusive licence to International Pediatric Nephrology Association.