Psychosis is diagnosed based on disruptions in the structure and use of language, including reduced syntactic complexity, derailment, and tangentiality. With the development of computational analysis, natural language processing (NLP) techniques are used in many areas of life to make evaluations and inferences regarding people's thoughts, feelings and behavior. The present study explores morphological characteristic of schizophrenia inpatients using NLP. Transcripts of recorded stories by 49 male subjects (24 inpatients diagnosed with schizophrenia and 25 controls) about 14 Thematic Apperception Test (TAT) pictures were morphologically analyzed. Relative to the control group, the schizophrenic inpatients employed: (1) a similar ratio of nouns, but fewer verbs, adjectives and adverbs; (2) a higher ratio of lemmas to token (LTR) and type to token (TTR); (3) a smaller gap between LTR and TTR; and (4) greater use of the first person. The results were cross-verified using three well-known fitting classifier algorithms (Random Forest, XGBoost and a support vector machine). Tests of prediction accuracy, precision and recall found correct attribution of patients to the schizophrenia group at a rate of between 80 and 90%. Overall, the results suggest that the language of schizophrenic inpatients is significantly different from that of healthy controls, being morphologically less complex, more associative and more focused on the self. The findings support NLP analysis as a complementary addition to the traditional clinical psychosis evaluation for schizophrenia.
Keywords: Natural language processing; mental illness; morphology; psychosis; schizophrenia.
© 2021 Scandinavian Psychological Associations and John Wiley & Sons Ltd.