Phytonutrient Inhibitors of SARS-CoV-2/NSP5-Encoded Main Protease (Mpro) Autocleavage Enzyme Critical for COVID-19 Pathogenesis

J Diet Suppl. 2023;20(2):284-311. doi: 10.1080/19390211.2021.2006388. Epub 2021 Nov 25.

Abstract

The genomic reshuffling, mutagenicity, and high transmission rate of the SARS-CoV-2 pathogen highlights an urgent need for effective antiviral interventions for COVID-19 control. Targeting the highly conserved viral genes and/or gene-encoded viral proteins such as main proteinase (Mpro), RNA-dependent RNA polymerase (RdRp) and helicases are plausible antiviral approaches to prevent replication and propagation of the SARS-CoV-2 infection. Coronaviruses (CoVs) are prone to extensive mutagenesis; however, any genetic alteration to its highly conserved Mpro enzyme is often detrimental to the viral pathogen. Therefore, inhibitors that target the Mpro enzyme could reduce the risk of mutation-mediated drug resistance and provide effective antiviral protection. Several existing antiviral drugs and dietary bioactives are currently repurposed to treat COVID-19. Dietary bioactives from three ayurvedic medicinal herbs, 18 β-glycyrrhetinic acidG = 8.86 kcal/mol), SolanocapsineG = 8.59 kcal/mol), and VasicolineG = 7.34 kcal/mol), showed high-affinity binding to Mpro enzyme than the native N3 inhibitor (ΔG = 5.41 kcal/mol). Flavonoids strongly inhibited SARS-CoV-2 Mpro with comparable or higher potency than the antiviral drug, remdesivir. Several tannin hydrolysates avidly bound to the receptor-binding domain and catalytic dyad (His41 and Cys145) of SARS-CoV-2 Mpro through H-bonding forces. Quercetin binding to Mpro altered the thermostability of the viral protein through redox-based mechanism and inhibited the viral enzymatic activity. Interaction of quercetin-derivatives with the Mpro seem to be influenced by the 7-OH group and the acetoxylation of sugar moiety on the ligand molecule. Based on pharmacokinetic and ADMET profiles, several phytonutrients could serve as a promising redox nutraceutical for COVID-19 management.

Keywords: Antiviral; Ayurvedic Medicine; COVID-19; Mpro; Phytonutrients; Quercetin; Redox nutraceutical; SARS-CoV-2.

MeSH terms

  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology
  • Antiviral Agents / therapeutic use
  • COVID-19*
  • Humans
  • Peptide Hydrolases / pharmacology
  • Phytochemicals / pharmacology
  • Quercetin / pharmacology
  • SARS-CoV-2 / metabolism

Substances

  • Quercetin
  • Antiviral Agents
  • Peptide Hydrolases
  • Phytochemicals