The increasing prevalence of diabetes and its complications, such as cardiovascular and kidney disease, remains a huge burden globally. Identification of biomarkers for the screening, diagnosis, and prognosis of diabetes and its complications and better understanding of the molecular pathways involved in the development and progression of diabetes can facilitate individualized prevention and treatment. With the advancement of analytical techniques, metabolomics can identify and quantify multiple biomarkers simultaneously in a high-throughput manner. Providing information on underlying metabolic pathways, metabolomics can further identify mechanisms of diabetes and its progression. The application of metabolomics in epidemiological studies have identified novel biomarkers for type 2 diabetes (T2D) and its complications, such as branched-chain amino acids, metabolites of phenylalanine, metabolites involved in energy metabolism, and lipid metabolism. Metabolomics have also been applied to explore the potential pathways modulated by medications. Investigating diabetes using a systems biology approach by integrating metabolomics with other omics data, such as genetics, transcriptomics, proteomics, and clinical data can present a comprehensive metabolic network and facilitate causal inference. In this regard, metabolomics can deepen the molecular understanding, help identify potential therapeutic targets, and improve the prevention and management of T2D and its complications. The current review focused on metabolomic biomarkers for kidney and cardiovascular disease in T2D identified from epidemiological studies, and will also provide a brief overview on metabolomic investigations for T2D.
Keywords: biomarkers; cardiovascular disease; chronic kidney disease; metabolomics; type 2 diabetes.