Objective: To model the evolution of peak temperature and volume of damaged esophagus during and after radiofrequency (RF) ablation using low power-moderate duration (LPMD) versus high power-short duration (HPSD) or very high power-very short duration (VHPVSD) settings.
Methods: An in silico simulation model of RF ablation accounting for left atrial wall thickness, nearby organs and tissues, as well as catheter contact force. The model used the Arrhenius equation to derive a thermal damage model and estimate the volume of esophageal damage over time during and after RF application under conditions of LPMD (30 W, 20 s), HPSD (50 W, 6 s), and VHPVSD (90 W, 4 s).
Results: There was a close correlation between maximum peak temperature after RF application and volume of esophageal damage, with highest correlation (R2 = 0.97) and highest volume of esophageal injury in the LPMD group. A greater increase in peak temperature and greater relative increase in esophageal injury volume in the HPSD (240%) and VHPSD (270%) simulations occurred after RF termination. Increased endocardial to esophageal thickness was associated with a longer time to maximum peak temperature (R2 > 0.92), especially in the HPSD/VHPVSD simulations, and no esophageal injury was seen when the distances were >4.5 mm for LPMD or >3.5 mm for HPSD.
Conclusion: LPMD is associated with a larger total volume of esophageal damage due to the greater total RF energy delivery. HPSD and VHPVSD shows significant thermal latency (resulting from conductive tissue heating after RF termination), suggesting a requirement for fewer esophageal temperature cutoffs during ablation.
Keywords: RF ablation; esophageal injury; high power-short duration; in silico study; luminal esophageal temperature.
© 2021 Wiley Periodicals LLC.