Incomplete spiral artery remodeling, caused by impaired extravillous trophoblast invasion, is a fundamental pathogenic process associated with malplacentation and the development of preeclampsia. Nevertheless, the mechanisms controlling this regulation of trophoblast invasion are largely unknown. We report that sphingosine-1-phosphate synthesis and expression is abundant in healthy trophoblast, whereas in pregnancies complicated by preeclampsia the placentae are associated with reduced sphingosine-1-phosphate and lower SPHK1 (sphingosine kinase 1) expression and activity. In vivo inhibition of sphingosine kinase 1 activity during placentation in pregnant mice led to decreased placental sphingosine-1-phosphate production and defective placentation, resulting in a preeclampsia phenotype. Moreover, sphingosine-1-phosphate increased HTR8/SVneo (immortalized human trophoblst cells) cell invasion in a Hippo-signaling-dependent transcriptional coactivator YAP (Yes-associated protein) dependent manner, which is activated by S1PR2 (sphingosine-1-phosphate receptor-2) and downstream RhoA (Ras homolog gene family, member A)/ROCK (Rho-associated protein kinase) induced actin polymerization. Mutation-based YAP-5SA (S61A, S109A, S127A, S164A, S381A) demonstrated that sphingosine-1-phosphate activation of YAP could be either dependent or independent of Hippo signaling. Together, these findings suggest a novel pathogenic pathway of preeclampsia via disrupted sphingosine-1-phosphate metabolism and signaling-induced, interrupted actin dynamics and YAP deactivation; this may lead to potential novel intervention targets for the prevention and management of preeclampsia.
Keywords: cytoskeleton; preeclampsia; pregnancy; sphingosine; trophoblasts.