Potassium channels have emerged as regulators of carcinogenesis, thus introducing possible new therapeutic strategies in the fight against cancer. In particular, the large-conductance Ca2+-activated K+ channel, often referred to as BK channel, is involved in several cancer-associated processes. Here, we investigated the effects of different BK activators, NS-11021, NS-19504, and BMS-191011, in IGR39 (primary melanoma cell line) and Panc-1 (primary pancreatic duct carcinoma cell line), highly expressing the channel, and in IGR37 (metastatic melanoma cell line) that barely express BK. Our data showed that NS-11021 and NS-19504 potently activated BK channels in IGR39 and Panc-1 cells, while no effect on channel activation was detected in IGR37 cells. On the contrary, BK channel activator BMS-191011 was less effective. However, only NS-11021 showed significant effects in cancer-associated processes, such as cell survival, migration, and proliferation in these cancer cell lines. Moreover, NS-11021 led to an increase of intracellular Ca2+ concentration, independent of BK channel activation, thus complicating any interpretation of its role in the regulation of cancer-associated mechanisms. Overall, we conclude that the activation of the BK channel by itself is not sufficient to produce beneficial anti-cancer effects in the melanoma and PDAC cell lines examined. Importantly, our results raise an alarm flag regarding the use of presumably specific BK channel openers as anti-cancer agents.
Keywords: BK channel; BK openers; IGR39 cells; Panc-1 cells; calcium; cancers.