A highly potential acyclic Schiff base fluorescent turn on sensor for Zn2+ ions and colorimetric chemosensor for Zn2+, Cu2+ and Co2+ ions and its applicability in live cell imaging

J Photochem Photobiol B. 2022 Jan:226:112371. doi: 10.1016/j.jphotobiol.2021.112371. Epub 2021 Dec 2.

Abstract

Herein, we report two acyclic Schiff base receptors CS-1 and CS-2 capable of being selective fluorescent turn on for Zn2+ions and colorimetric chemosensor for Zn2+, Cu2+, and Co2+ ions by showing a colour change from colourless to yellow in 1:1 ratio of acetonitrile and HEPES buffer (1:1, v/v, pH 7.4) without the interference from other metal ions screened (Cd2+, Hg2+, Sn2+, Ni2+, Cr3+, Mn2+, Pb2+, Ba2+, Al3+, Ca2+, Mg2+, K+ and Na+). The fluorescence turn on enhancement towards Zn2+ ions is ascribed to PET blocking, suppression of -C=N- isomerisation, and the ESIPT process. The selectivity, competitivity and reversibility of the synthesised probes (CS-1 and CS-2) made them promising chemosensors for the detection of Zn2+, Cu2+, and Co2+ ions. The density functional theory (DFT) calculations have theoretically endorsed the colorimetric changes in the examined absorption spectra and binding mode of both CS-1/CS-2 with metals ions. In addition, 1H NMR titrations were also consistent with the recognition mechanism of Zn2+ ions with the CS-1/CS-2. Further, the Jobs plot analysis infers a 1:1 stoichiometric ratio for both evaluating receptors CS-1 and CS-2 with Zn2+, Cu2+ and Co2+ ions and was supported by DFT, NMR (only for Zn2+ ions), UV-Visible, and fluorescence spectroscopic studies. Moreover, the detection limits of CS-1 and CS-2 for Zn2+ ions were determined to be 7.69 and 5.35 nM, respectively, which is less compared to the detection limit of Cu2+, Co2+ ions as well as the limit approved by the United State Environmental Protection Agency (US EPA). The probes CS-1 and CS-2 found to show high fluorescence quantum yields at pH = 7 during the titration with Zn2+ as compared with other pHs (5-6 and 8-11). Gratifyingly, fluorescence microscopy imaging in HeLa cells revealed that the pair of receptors can be employed as an excellent fluorescent probe for the detection of Zn2+ions in living cells, indicating that this facile chemosensor has a huge potential in cellular imaging.

Keywords: Bioimaging; Colorimetric sensors; Fluorescent turn on; Schiff bases; Selectivity; Zn(2+) ions.

MeSH terms

  • Cobalt* / chemistry
  • Colorimetry* / methods
  • Copper* / analysis
  • Copper* / chemistry
  • Density Functional Theory
  • Fluorescent Dyes* / chemistry
  • HeLa Cells
  • Humans
  • Schiff Bases* / chemistry
  • Spectrometry, Fluorescence*
  • Zinc* / analysis
  • Zinc* / chemistry

Substances

  • Schiff Bases
  • Fluorescent Dyes
  • Zinc
  • Copper
  • Cobalt