Introduction: Primate animal models are being utilized to explore novel therapies for spinal cord injuries. This study aimed to evaluate the efficiency of the transplantation of predegenerated nerve segments in unilateral spinal cord-hemisected bonnet monkeys' (Macaca radiata) locomotor functions using the complex runways.
Materials and methods: The bonnet monkeys were initially trained to walk in a bipedal motion on grid and staircase runways. In one group of trained monkeys, surgical hemisection was made in the spinal cord at the T12-L1 level. In the other group, hemisection was induced in the spinal cord, and the ulnar nerve was also transected at the same time (transplant group). After one week, the hemisected cavity was reopened and implanted with predegenerated ulnar nerve segments obtained from the same animal of the transplant group.
Results: All the operated monkeys showed significant deficits in locomotion on runways at the early postoperative period. The walking ability of operated monkeys was found to be gradually improved, and they recovered nearer to preoperative level at the fourth postoperative month, and there were no marked differences.
Conclusion: The results demonstrate that there were no significant improvements in the locomotion of monkeys on runways after the delayed grafting of nerve segments until one year later. The failure of the predegenerated nerve graft as a possible therapeutic strategy to improve the locomotion of monkeys may be due to a number of factors set in motion by trauma, which could possibly prevent the qualities of regeneration. The exact reason for this ineffectiveness of predegenerated nerve segments and their underlying mechanism is not known.
Keywords: Macaca radiata; locomotor recovery; predegenerated nerve transplantation; spinal cord hemisection.