Polyphenol Loaded W1/O/W2 Emulsions Stabilized with Lesser Mealworm (Alphitobius diaperinus) Protein Concentrate Produced by Membrane Emulsification: Stability under Simulated Storage, Process, and Digestion Conditions

Foods. 2021 Dec 4;10(12):2997. doi: 10.3390/foods10122997.

Abstract

Water-in-oil-in-water (W1/O/W2) emulsions are complex delivery systems for polyphenols amongst other bio-actives. To stabilize the oil-water interphase, dairy proteins are commonly employed, which are ideally replaced by other, more sustainable sources, such as insect proteins. In this study, lesser mealworm (Alphitobius diaperinus) protein concentrate (LMPC) is assessed and compared to whey protein (WPI) and pea protein (PPI), to stabilize W1/O/W2 emulsions and encapsulate a commercial polyphenol. The results show that LMPC is able to stabilize W1/O/W2 emulsions comparably to whey protein and pea protein when using a low-energy membrane emulsification system. The final droplet size (d4,3) is 7.4 μm and encapsulation efficiency is between 72 and 74%, regardless of the protein used. Under acidic conditions, the LMPC shows a similar performance to whey protein and outperforms pea protein. Under alkaline conditions, the three proteins perform similarly, while the LMPC-stabilized emulsions are less able to withstand osmotic pressure differences. The LMPC stabilized emulsions are also more prone to droplet coalescence after a freeze-thaw cycle than the WPI-stabilized ones, but they are the most stable when exposed to the highest temperatures tested (90 °C). The results show LMPC's ability to stabilize multiple emulsions and encapsulate a polyphenol, which opens the door for application in foods.

Keywords: emulsion stability; insect protein; lesser mealworm; membrane emulsification; multiple emulsions; polyphenol encapsulation.