Inhibition of p53 Sulfoconjugation Prevents Oxidative Hepatotoxicity and Acute Liver Failure

Gastroenterology. 2022 Apr;162(4):1226-1241. doi: 10.1053/j.gastro.2021.12.260. Epub 2021 Dec 23.

Abstract

Background & aims: Sulfoconjugation of small molecules or protein peptides is a key mechanism to ensure biochemical and functional homeostasis in mammals. The PAPS synthase 2 (PAPSS2) is the primary enzyme to synthesize the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF), in which oxidative stress is a key pathogenic event, whereas sulfation of APAP contributes to its detoxification. The goal of this study was to determine whether and how PAPSS2 plays a role in APAP-induced ALF.

Methods: Gene expression was analyzed in APAP-induced ALF in patients and mice. Liver-specific Papss2-knockout mice using Alb-Cre (Papss2ΔHC) or AAV8-TBG-Cre (Papss2iΔHC) were created and subjected to APAP-induced ALF. Primary human and mouse hepatocytes were used for in vitro mechanistic analysis.

Results: The hepatic expression of PAPSS2 was decreased in APAP-induced ALF in patients and mice. Surprisingly, Papss2ΔHC mice were protected from APAP-induced hepatotoxicity despite having a decreased APAP sulfation, which was accompanied by increased hepatic antioxidative capacity through the activation of the p53-p2-Nrf2 axis. Treatment with a sulfation inhibitor also ameliorated APAP-induced hepatotoxicity. Gene knockdown experiments showed that the hepatoprotective effect of Papss2ΔHC was Nrf2, p53, and p21 dependent. Mechanistically, we identified p53 as a novel substrate of sulfation. Papss2 ablation led to p53 protein accumulation by preventing p53 sulfation, which disrupts p53-MDM2 interaction and p53 ubiquitination and increases p53 protein stability.

Conclusions: We have uncovered a previously unrecognized and p53-mediated role of PAPSS2 in controlling oxidative response. Inhibition of p53 sulfation may be explored for the clinical management of APAP overdose.

Keywords: Acetaminophen; Oxidative Hepatotoxicity; PAPSS2; Sulfation; p53.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetaminophen / toxicity
  • Animals
  • Chemical and Drug Induced Liver Injury* / etiology
  • Chemical and Drug Induced Liver Injury* / metabolism
  • Chemical and Drug Induced Liver Injury* / prevention & control
  • Humans
  • Liver / metabolism
  • Liver Failure, Acute* / chemically induced
  • Liver Failure, Acute* / metabolism
  • Liver Failure, Acute* / prevention & control
  • Mammals / metabolism
  • Mice
  • Mice, Inbred C57BL
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism
  • Oxidative Stress
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • NF-E2-Related Factor 2
  • Tumor Suppressor Protein p53
  • Acetaminophen