Collections of wheat leaves infected with the leaf rust fungus, Puccinia triticina, were obtained from the southeastern states, the Ohio Valley, the Great Plains, and Washington in 2018, 2019, and 2020 to determine the prevalent virulence phenotypes in the wheat-growing regions of the United States. In the hard red winter wheat region of the southern and mid Great Plains, MNPSD and MPPSD were the two most common phenotypes in 2018 and 2019. In 2020, BBBQD with high virulence to durum wheat was the most common phenotype in the southern Great Plains. In the hard red spring wheat region of the northern Great Plains, MNPSD, MPPSD, MBDSD, and TBBGS were the predominant phenotypes. In the soft red winter wheat region of the southeastern states and Ohio Valley region, MBTNB, MCTNB, and MNPSD were the three most common phenotypes. Collections in Washington had phenotypes LBDSG, LCDSG, LCDJG, and MBDSB that were not found in any other region. Isolates with virulence to the leaf rust resistance (Lr) gene Lr11 were most frequent in the southeastern states and Ohio Valley regions. The frequency of isolates with virulence to the Lr39 gene was highest in the Great Plains region and frequency of isolates with virulence to the Lr21 gene was highest in the northern Great Plains region. Selection of virulence phenotypes by Lr genes in the different market classes of wheat, combined with the effects of clonal reproduction, overwintering in southern regions, and low migration between the Great Plains region and eastern wheat-producing regions, has maintained the different P. triticina populations in the United States.
Keywords: cereals and grains; cultivar/resistance; disease management; field crops; fungi; pathogen detection; pathogen diversity.