Plasmatic MMP9 released from tumor-infiltrating neutrophils is predictive for bevacizumab efficacy in glioblastoma patients: an AVAglio ancillary study

Acta Neuropathol Commun. 2022 Jan 3;10(1):1. doi: 10.1186/s40478-021-01305-4.

Abstract

We previously identified matrix metalloproteinase 2 (MMP2) and MMP9 plasma levels as candidate biomarkers of bevacizumab activity in patients with recurrent glioblastoma. The aim of this study was to assess the predictive value of MMP2 and MMP9 in a randomized phase III trial in patients with newly diagnosed glioblastoma and to explore their tumor source. In this post hoc analysis of the AVAglio trial (AVAGlio/NCT00943826), plasma samples from 577 patients (bevacizumab, n = 283; placebo, n = 294) were analyzed for plasma MMP9 and MMP2 levels by enzyme-linked immunosorbent assay. A prospective local cohort of 38 patients with newly diagnosed glioblastoma was developed for analysis of tumor characteristics by magnetic resonance imaging and measurement of plasma and tumor levels of MMP9 and MMP2. In this AVAglio study, MMP9, but not MMP2, was correlated with bevacizumab efficacy. Patients with low MMP9 derived a significant 5.2-month overall survival (OS) benefit with bevacizumab (HR 0.51, 95% CI 0.34-0.76, p = 0.0009; median 13.6 vs. 18.8 months). In multivariate analysis, a significant interaction was seen between treatment and MMP9 (p = 0.03) for OS. In the local cohort, we showed that preoperative MMP9 plasma levels decreased after tumor resection and were correlated with tumor levels of MMP9 mRNA (p = 0.03). However, plasma MMP9 was not correlated with tumor size, invasive pattern, or angiogenesis. Using immunohistochemistry, we showed that MMP9 was expressed by inflammatory cells but not by tumor cells. After cell sorting, we showed that MMP9 was expressed by CD45+ immune cells. Finally, using flow cytometry, we showed that MMP9 was expressed by tumor-infiltrating neutrophils. In conclusion, circulating MMP9 is predictive of bevacizumab efficacy and is released by tumor-infiltrating neutrophils.

Keywords: Bevacizumab; Glioblastoma; MMP9; Neutrophils; Predictive biomarker.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Angiogenesis Inhibitors / pharmacology
  • Angiogenesis Inhibitors / therapeutic use*
  • Bevacizumab / pharmacology
  • Bevacizumab / therapeutic use*
  • Brain Neoplasms / drug therapy*
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Female
  • Glioblastoma / drug therapy*
  • Glioblastoma / metabolism
  • Glioblastoma / pathology
  • Humans
  • Male
  • Matrix Metalloproteinase 2 / blood
  • Matrix Metalloproteinase 9 / blood*
  • Middle Aged
  • Neutrophils / metabolism*
  • Treatment Outcome
  • Young Adult

Substances

  • Angiogenesis Inhibitors
  • Bevacizumab
  • Matrix Metalloproteinase 2
  • MMP9 protein, human
  • Matrix Metalloproteinase 9

Associated data

  • ClinicalTrials.gov/NCT00943826