Adequate treatment of skin wounds is vital to health. Nitrocellulose bandage as a traditional wound dressing is widely used for wound healing, but its limited air permeability and poor sterilization need to be improved for enhancing the actual efficacy. Here, nanoporous graphene (NPG) is used to mix into nitrocellulose for preparing a composite membrane, which exhibits a moderate transmission rate of water vapor, excellent toughness performance, and good biocompatibility. Moreover, the membrane shows an excellent broad-spectrum antibacterial property (>98%, Escherichia coli; >90%, Staphylococcus aureus) and can reduce the risk of microbial infection for the body after trauma. Importantly, after using the nanoporous graphene/nitrocellulose membrane, the wound closure percentage reaches 93.03 ± 1.08% at 7 days after the trauma, and the degree of skin tissue recovery is also improved significantly. Therefore, this study develops a highly efficient wound healing dressing, which is expected to be used directly in clinics.
Keywords: antibacterial property; microbial infection; nanoporous graphene; nitrocellulose membrane; wound healing.