We propose a discretization-free approach to simulation of cyclic voltammetry using Physics-Informed Neural Networks (PINNs) by constraining a feed-forward neutral network with the diffusion equation and electrochemically consistent boundary conditions. Using PINNs, we first predict one-dimensional voltammetry at a disc electrode with semi-infinite or thin layer boundary conditions. The voltammograms agree quantitatively with those obtained independently using the finite difference method and/or previously reported analytical expressions. Further, we predict the voltammetry at a microband electrode, solving the two-dimensional diffusion equation, obtaining results in close agreement with the literature. Last, we apply a PINN to voltammetry at the edges of a square electrode, quantifying the nonuniform current distribution near the corner of electrode. In general, we noticed the relative ease of developing PINNs for the solution of, in particular, the higher dimensional problem, and recommend PINNs as a potentially faster and easier alternative to existing approaches for voltammetric problems.