Isotopic evidence for nitrate sources and controls on denitrification in groundwater beneath an irrigated agricultural district

Sci Total Environ. 2022 Apr 15:817:152606. doi: 10.1016/j.scitotenv.2021.152606. Epub 2022 Jan 8.

Abstract

The application of N fertilisers to enhance crop yield is common throughout the world. Many crops have historically been, or are still, fertilised with N in excess of the crop requirements. A portion of the excess N is transported into underlying aquifers in the form of NO3-, which is potentially discharged to surface waters. Denitrification can reduce the severity of NO3- export from groundwater. We sought to understand the occurrence and hydrogeochemical controls on denitrification in NO3--rich aquifers beneath the Emerald Irrigation Area (EIA), Queensland, Australia, a region of extensive cotton and cereal production. Multiple stable isotope (in H2O, NO3-, DIC, DOC and SO42-) and radioactive isotope (3H and 36Cl) tracers were used to develop a conceptual N process model. Fertiliser-derived N is likely incorporated and retained in the soil organic N pool prior to its mineralisation, nitrification, and migration into aquifers. This process, alongside the near absence of other anthropogenic N sources, results in a homogenised groundwater NO3- isotopic signature that allows for denitrification trends to be distinguished. Regional-scale denitrification manifests as groundwater becomes increasingly anaerobic during flow from an upgradient basalt aquifer to a downgradient alluvial aquifer. Dilution and denitrification occurs in localised electron donor-rich suboxic hyporheic zones beneath leaking irrigation channels. Using approximated isotope enrichment factors, estimates of regional-scale NO3- removal ranges from 22 to 93% (average: 63%), and from 57 to 91% (average: 79%) beneath leaking irrigation channels. In the predominantly oxic upgradient basalt aquifer, raised groundwater tables create pathways for NO3- to be transported to adjacent surface waters. In the alluvial aquifer, the transfer of NO3- is limited both physically (through groundwater-surface water disconnection) and chemically (through denitrification). These observations underscore the need to understand regional- and local-scale hydrogeological processes when assessing the impacts of groundwater NO3- on adjacent and end of system ecosystems.

Keywords: Agriculture; Denitrification; Emerald Irrigation Area; Groundwater nitrate; Isotope tracers.

MeSH terms

  • Denitrification
  • Ecosystem
  • Environmental Monitoring / methods
  • Groundwater*
  • Nitrates / analysis
  • Water Pollutants, Chemical* / analysis

Substances

  • Nitrates
  • Water Pollutants, Chemical