Canopy structure and phenology modulate the impacts of solar radiation on C and N dynamics during litter decomposition in a temperate forest

Sci Total Environ. 2022 May 10:820:153185. doi: 10.1016/j.scitotenv.2022.153185. Epub 2022 Jan 19.

Abstract

Decomposition of plant organic matter plays a key role in the terrestrial biogeochemical cycles. Sunlight has recently been identified as an important contributor to carbon [C] turnover through photodegradation, accelerating decomposition even in forest ecosystems where understorey solar irradiance remains relatively low. However, it is uncertain how C and nutrients dynamics respond to fluctuations in solar spectral irradiance caused by canopy structure (understorey vs. gaps) and season (open vs. closed canopy phenology). Spectral-attenuation treatments were used to compare litter decomposition over eight months, covering canopy phenology, in a temperate deciduous forest and an adjacent gap. Exposure to the full spectrum of sunlight increased the loss of litter C and lignin by 75% and 64% in the forest gap, and blue light was responsible for respectively 27% and 42% of that loss. Whereas in the understorey, C and lignin loss were similar among spectral-attenuation treatments over the experimental period, except prior to and during spring canopy flush when exposure to the full spectrum of sunlight promoted C loss by 15% overall, 80% of which was attributable to ultraviolet-B (UV-B) radiation. Nitrogen [N] was immobilized in the understorey during canopy flush before the canopy completely closed but N was swiftly released during canopy leaf-fall. Our study suggests that blue-driven photodegradation plays an important role in lignin decomposition and N dynamics in canopy gaps, whereas seasonal canopy phenology affecting sunlight reaching the forest floor drastically changes patterns of C and N in litter during decomposition. Hence, including sunlight dynamics driven by canopy structure and phenology would improve estimates of biogeochemical cycling in forests responding to changes in climate and land-use.

Keywords: Canopy cover; Carbon loss; Mesic ecosystems; Nutrient dynamics; Photodegradation.

MeSH terms

  • Climate
  • Ecosystem*
  • Forests*
  • Plant Leaves / metabolism
  • Seasons
  • Trees