We postulated that vascular dysfunction mediates the relationship between amyloid load and white matter hyperintensities (WMH) in cerebral amyloid angiopathy (CAA). Thirty-eight cognitively healthy patients with CAA (mean age 70 ± 7.1) were evaluated. WMH was quantified and expressed as percent of total intracranial volume (pWMH) using structural MRI. Mean global cortical Distribution Volume Ratio representing Pittsburgh Compound B (PiB) uptake (PiB-DVR) was calculated from PET scans. Time-to-peak [TTP] of blood oxygen level-dependent response to visual stimulation was used as an fMRI measure of vascular dysfunction. Higher PiB-DVR correlated with prolonged TTP (r = 0.373, p = 0.021) and higher pWMH (r = 0.337, p = 0.039). Prolonged TTP also correlated with higher pWMH (r = 0.485, p = 0.002). In a multivariate linear regression model, TTP remained independently associated with pWMH (p = 0.006) while PiB-DVR did not (p = 0.225). In a bootstrapping model, TTP had a significant indirect effect (ab = 0.97, 95% CI: 0.137-2.461), supporting that the association between PiB-DVR and pWMH is mediated by TTP response. There was no longer a direct effect independent of the hypothesized pathway. Our study suggests that the effect of vascular amyloid load on white matter disease is mediated by vascular dysfunction in CAA. Amyloid lowering strategies might prevent pathophysiological processes leading to vascular dysfunction, therefore limiting ischemic brain injury.
Keywords: Amyloid angiopathy; cerebral autoregulation; cerebrovascular disease; molecular imaging; positron emission tomography; white matter disease.