MicroRNAs (miRNAs) regulate various biological processes in insects. However, their roles in the regulation of insect diapause remain unknown. In this study, we address the biological function of a conserved miRNA, let-7-5p in the regulation of a juvenile hormone primary response gene, Krüppel homolog 1 (Kr-h1), which modulates reproductive diapause in Galeruca daurica. The dual luciferase reporter assay showed that let-7-5p depressed the expression of Kr-h1. The expression profiles of let-7-5p and Kr-h1 displayed opposite patterns in the adult developmental stage. Injection of let-7-5p agomir in pre-diapause adult females inhibited the expression of Kr-h1, which consequently led to delay ovarian development, increase lipid accumulation, expand fat body, and induce reproductive diapause just as depleting Kr-h1 did. Conversely, injection of let-7-5p antagomir resulted in opposite effects by reducing fat storage and stimulating reproduction. Moreover, JH receptor agonist methoprene reduced the expression of let-7-5p, and rescued the ovarian development defects associated with let-7-5p overexpression. These results indicate that let-7-5p plays an important role in the regulation of reproductive diapause and development of G. daurica adults through its target gene Kr-h1.
Keywords: Diapause; Galeruca daurica; Juvenile hormone; Kr-h1; microRNA.
Copyright © 2022 Elsevier Ltd. All rights reserved.