To improve the flexibility of the fabric stacks used in protective clothing, shear-thickening fluids (STFs) have previously been incorporated into woven microfiber fabrics to enhance their impact resistance. However, the microfiber-STF composites can exhibit loss of the STF from the composite over time due to the large interstitial spaces between fibers, resulting in limited long-term shape stability. In this study, nonwoven mats of electrospun ultrafine fibers (UFFs) were used in place of woven microfiber fabrics to improve the STF retention within the fiber-STF composites by taking advantage of high specific surface area, small pore size, and large capillary force. The UFF-STF composite, comprising an electrospun polyamide (PA 6,6) UFF mat and a fumed silica (FS) STF, exhibited excellent shape stability with high breakthrough pressure and improved STF retention compared to composites based on conventional microfiber fabrics. The mechanical response of the composite is shown to depend on the rate of deformation. At strain rates lower than the shear-thickening threshold of the STF, the introduction of STF resulted in no stiffening or strengthening of fiber mats, allowing the composite to remain flexible. At high deformation rates above the onset of shear thickening, the incorporation of STF improved both the elasticity and the viscosity of the material. In addition, the shape stability and the mechanical properties of the composite were influenced by the STF viscosity and the UFF morphology. STF with high particle loading and UFF with small fiber diameter resulted in a more pronounced enhancement to membrane performance.
Keywords: capillary force; composite; electrospinning; nanofiber; nonwoven; shear-thickening fluid.