Associations between polymorphisms in genes of base excision repair pathway and lung cancer risk

Transl Cancer Res. 2020 Apr;9(4):2780-2800. doi: 10.21037/tcr.2020.02.44.

Abstract

Background: The correlation between at-risk polymorphisms in genes of base excision repair (BER) pathways and lung cancer (LC) risk was newly considered but still not clear, a systematic review and updated meta-analysis was performed in the current study.

Methods: We identified and recorded the eligible publications from Google Scholar, PubMed, Medicine and Web of Science. For all calculates, odds ratios (ORs) and 95% confidence intervals (CIs) were applied to estimate the potential relationship between these genetic variants and LC risk. Subsequently, Begg's funnel plot and Egger's test were used to appraising the publication bias.

Results: A total of 202 case-control studies extracted from 116 publications were enrolled. Firstly, we analyzed six polymorphisms in XRCC1, the overall analysis results of homozygote and recessive models illustrated that rs3213245 polymorphism was remarkably linked to an upgrade LC risk. Then, in the subgroup analysis stratified by ethnicity, we uncovered a meaningfully raised risk of LC in Asian population in homozygote and recessive models for rs3213245 polymorphism, as well as in the allelic contrast, heterozygous and dominant models for rs915927 polymorphism. For APEX1-rs1760944 polymorphism, the overall analysis suggested a significantly decreased risk. Another gene was OGG1, we identified a significantly upregulated risk in recessive model of OGG1-rs1052133 polymorphism for LC.

Conclusions: XRCC1-rs3213245 and OGG1-rs1052133 polymorphisms are risk factors for LC, while APEX1-rs1760944 polymorphism is a protective factor.

Keywords: Lung cancer (LC); base excision repair pathway (BER pathway); polymorphism; risk.