Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations

Arab J Chem. 2022 May;15(5):103743. doi: 10.1016/j.arabjc.2022.103743. Epub 2022 Jan 29.

Abstract

During COVID-19 crisis, water pollution caused by pharmaceutical residuals have enormously aggravated since millions of patients worldwide are consuming tons of drugs daily. Antibiotics are the preponderance pharmaceutical pollutants in water bodies that surely cause a real threat to human life and ecosystems. The excellent characteristics of chitosan such as nontoxicity, easy functionality, biodegradability, availability in nature and the abundant hydroxyl and amine groups onto its backbone make it a promising adsorbent. Herein, we aimed to provide a comprehensive overview of recent published research papers regarding the removal of antibiotics by chitosan composite-based adsorbents. The structure, ionic form, optimum removal pH and λmax of the most common antibiotics including Tetracycline, Ciprofloxacin, Amoxicillin, Levofloxacin, Ceftriaxone, Erythromycin, Norfloxacin, Ofloxacin, Doxycycline, Cefotaxime and Sulfamethoxazole were summarized. The development of chitosan composite-based adsorbents in order to enhance their adsorption capacity, reusability and validity were presented. Moreover, the adsorption mechanisms of these antibiotics were explored to provide more information about adsorbate-adsorbent interactions. Besides the dominant factors on the adsorption process including pH, dosage, coexisting ions, etc. were discussed. Moreover, conclusions and future recommendations are provided to inspire for further researches.

Keywords: Adsorption; Chitosan; Ionic form; Mechanism; Pharmaceutical residue.

Publication types

  • Review