Land degradation caused by soil erosion (SE) in forests converted into cropland under climate change, particularly with increased rainfall intensity, is of great concern to the agricultural sustainability of the tropical mountain ecosystem. We evaluated the response of six hilly micro-watersheds (HMW) under different Integrated Farming Systems (IFSs) to SE in multi-model climate change scenarios using the Water Erosion Prediction Project (WEPP) model. The IFSs were forestry (HMW1), abandoned shifting cultivation (HMW2), livestock with fodder crops (HMW3), agroforestry (HMW4), agri-horti-silvi-pastoral (HMW5), and horticulture (HMW6) established on a hilly slope (32.0-53.2%) of the eastern Himalayas (Meghalaya, India). The WEPP model was calibrated and validated with measured runoff and soil loss data of 24 years for each of the six IFSs. The projected annual SE (average) for all HMWs increased in all RCPs. The IFS based on shifting cultivation (HMW2) was the most vulnerable, with the highest percentage increase in SE (46-235%) compared to the baseline years (1976-2005) under RCP 8.5. The cultivated IFSs (HMW3 to HMW6) had 47.8-57.0% less runoff and 39.2-74.6% less soil loss than HMW2 under RCP 8.5. Of these, HMW6 followed by HMW4 and HMW5 were the most effective at minimizing soil loss. Simulation results showed a reduction in soil loss through adaptive strategies such as mulching with broom grasses, stones, field beans, and the introduction of subsurface drainage. Adoption of IFS based on horticulture and agroforestry with bio-mulching on steep slopes is an effective measure to control soil erosion in the eastern Himalaya (India).
Keywords: Climate change; Hilly watershed; Integrated farming system; Representative concentration pathways; Soil erosion; WEPP.
Copyright © 2022 Elsevier Ltd. All rights reserved.