Combinatorial Approach of Binary Colloidal Crystals and CRISPR Activation to Improve Induced Pluripotent Stem Cell Differentiation into Neurons

ACS Appl Mater Interfaces. 2022 Feb 23;14(7):8669-8679. doi: 10.1021/acsami.1c17975. Epub 2022 Feb 15.

Abstract

Conventional methods of neuronal differentiation in human induced pluripotent stem cells (iPSCs) are tedious and complicated, involving multistage protocols with complex cocktails of growth factors and small molecules. Artificial extracellular matrices with a defined surface topography and chemistry represent a promising venue to improve neuronal differentiation in vitro. In the present study, we test the impact of a type of colloidal self-assembled patterns (cSAPs) called binary colloidal crystals (BCCs) on neuronal differentiation. We developed a CRISPR activation (CRISPRa) iPSC platform that constitutively expresses the dCas9-VPR system, which allows robust activation of the proneural transcription factor NEUROD1 to rapidly induce neuronal differentiation within 7 days. We show that the combinatorial use of BCCs can further improve this neuronal differentiation system. In particular, our results indicate that fine tuning of silica (Si) and polystyrene (PS) particle size is critical to generate specific topographies to improve neuronal differentiation and branching. BCCs with 5 μm silica and 100 nm carboxylated PS (PSC) have the most prominent effect on increasing neurite outgrowth and more complex ramification, while BCCs with 2 μm Si and 65 nm PSC particles are better at promoting neuronal enrichment. These results indicate that biophysical cues can support rapid differentiation and improve neuronal maturation. In summary, our combinatorial approach of CRISPRa and BCCs provides a robust and rapid pipeline for the in vitro production of human neurons. Specific BCCs can be adapted to the late stages of neuronal differentiation protocols to improve neuronal maturation, which has important implications in tissue engineering, in vitro biological studies, and disease modeling.

Keywords: CRISPR activation; artificial extracellular matrix; colloidal self-assembled patterns (cSAPs); induced pluripotent stem cells (iPSCs); neuronal differentiation.

MeSH terms

  • Cell Differentiation
  • Clustered Regularly Interspaced Short Palindromic Repeats
  • Humans
  • Induced Pluripotent Stem Cells*
  • Neurons
  • Tissue Engineering