The citrus red mite, Panonychus citri McGregor, is a key pest of different citrus species in various parts of the world. Considering the key role of resistant host plants in integrated pest management strategies, we evaluated the effects of five citrus species including grapefruit (Citrus paradisi), lime (Citrus aurantifolia), tangerine (Citrus reticulata), orange (Citrus sinensis), and sour orange (Citrus aurantium) on life table parameters of P. citri under laboratory conditions (25 ± 1°C, 65 ± 5% RH, 16:8 L:D). In addition, biochemical traits of the citrus plant species were evaluated in order to understand any possible relationship between important life history parameters with biochemical metabolites of citrus plant leaves. Phytochemicals were determined in leaf extract of citrus plant species. Various citrus species had significant effects on life history and demographical parameters of P. citri. The longest pre-adult time was observed on grapefruit (16.52 ± 0.43 days). Higher fecundity rate was on orange (15.05 ± 2.41 eggs) and tangerine (14.60 ± 3.07 eggs) and the lowest was on grapefruit (7.21 ± 2.00 eggs). The highest intrinsic rate of increase (r) was recorded as 0.071 (day-1) on tangerine, and the lowest value of this parameter was obtained on grapefruit (0.016 day-1). Significant correlations were observed between life history parameters with biochemical metabolites (carbohydrate, phenolic compounds, anthocyanin, and flavonoid). The results revealed that grapefruit was a relatively resistant host plant and tangerine was the most suitable host plant for feeding of P. citri. Our findings could be helpful for sustainable management of P. citri in citrus orchards.
Keywords: Citrus; host plant resistance; pest management; phytochemical metabolites; population parameters; spider mites.