Introduction: We aimed to describe shear wave elastography parameters of non-mass lesions of the breast and to assess the measures of diagnostic accuracy of shear wave elastography in the differentiation of non-mass lesions compared with conventional ultrasound, using histopathologic results as the reference standard.
Methods: This retrospective study included breast ultrasound-detected non-mass lesions with a confirmed pathologic diagnosis during a two-year study period. B-mode ultrasound and shear wave elastography were performed for all lesions before biopsy. Ultrasound features, shear wave elastography parameters (mean elasticity and maximum stiffness color), as well as Breast Imaging-Reporting and Data System categories were recorded for each lesion. Measures of diagnostic accuracy of ultrasound and ultrasound + shear wave elastography were also assessed.
Results: From a total of 567 breast lesions requiring core-needle biopsy, 49 (8.6%) were considered as non-mass lesions. Based on histopathologic reports, 32 patients (65.3%) had non-high-risk benign lesions, five (10.2%) had high-risk benign lesions, five (10.2%) had ductal carcinoma in situ, and seven (14.3%) had invasive carcinoma. There was no significant difference in patients' age and palpability between benign and malignant lesions (p = 0.16 and p = 0.12, respectively). Mean elasticity values and Breast Imaging-Reporting and Data System categories were significantly higher among malignant lesions compared with benign non-mass lesions (both p < 0.001). Furthermore, the addition of shear wave elastography to grayscale ultrasound increased the specificity, positive predictive value, and diagnostic accuracy.
Conclusion: The complementary use of shear wave elastography with conventional ultrasound might help in the differentiation of non-mass breast lesions and has the potential to decrease the frequency of unnecessary biopsies performed for benign non-mass lesions.
Keywords: BI-RADS; Breast; non-mass lesion; shear wave elastography; ultrasound.
© The Author(s) 2021.