In Northern European countries, a great variety of Red cattle populations exists which can be broadly categorized in two groups: specialized dairy and dual-purpose breeds. Collaboration between these breeds (i.e. the exchange of sires across breeds) can be beneficial but is limited so far. The aim of this study was to demonstrate and evaluate consequences of collaboration between Red breeds using stochastic simulations. Two breeding lines (dairy type and dual purpose) were simulated. As a special aspect of this study, differences in genetic levels of breeding traits (milk production, beef production, mastitis resistance, fertility, feed efficiency) have been taken into account. Various scenarios were investigated where across-breed selection was either restricted or allowed and with different correlations between breeding goals in the two lines. The results of this study were influenced by the different genetic levels in breeding traits only in the first years of simulation. In the long run, the breed differences did not affect the degree of collaboration between lines. When the correlation between breeding goals was close to unity, the selection of external bulls was highly beneficial in terms of genetic gain and total monetary gain. Additionally, the lowest rate of inbreeding was found in that case. With decreasing correlations between environments, degree of cooperation between lines rapidly terminated and lines operated individually. In last years of simulation, cooperation was only found when the correlation between breeding goals was close to unity. From a long-term perspective, the exchange of breeding sires across lines also caused negative effects. In the dual-purpose line, deterioration of genetic gain in mastitis resistance and fertility was observed. Additionally, breeding lines genetically converged, which decreased genetic diversity. Collectively, short-term benefits and long-term negative effects have to be reconciled if collaboration between Red breeds in Northern Europe is to be pursued.
Keywords: breeding strategy; collaboration; dairy cattle; dual-purpose cattle; stochastic simulation.
© 2022 The Authors. Journal of Animal Breeding and Genetics published by John Wiley & Sons Ltd.