CaMKII has long been known to be a key effector for synaptic plasticity. Recent studies have shown that a variety of modulators interact with the subunits of CaMKII to regulate the long-term potentiation (LTP) of hippocampal neurons. However, whether long non-coding RNAs modulate the activity of CaMKII and affect synaptic plasticity is still elusive. Here, we identify a previously uncharacterized long non-coding RNA Carip that functions as a scaffold, specifically interacts with CaMKIIβ, and regulates the phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptor subunits in the hippocampus. The absence of Carip causes dysfunction of synaptic transmission and attenuates LTP in hippocampal CA3-CA1 synapses, which further leads to impairment of spatial learning and memory. In summary, our findings demonstrate that Carip modulates long-term synaptic plasticity by changing AMPA receptor and NMDA receptor activities, thereby affecting spatial learning and memory in mice.
Keywords: CaMKIIβ; Carip; LTP; hippocampal neurons; learning and memory.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.