Background and purpose: Warburg Micro syndrome (WARBM) is a rare autosomal recessive genetic disease characterized by ocular, neurologic, and endocrine anomalies. WARBM is a phenotypically and genetically heterogeneous syndrome caused by mutations in RAB3GAP1, RAB3GAP2, RAB18, and TBC1D20. Here we present the clinical and genetic characterization of a consanguineous Tunisian family with a WARBM phenotype presenting two pathogenic variations, one of which is on RAB3GAP1.
Methods: We applied whole-exome sequencing (WES) to two affected young males presenting a WARBM-compatible phenotype.
Results: We reveal a new variation in RAB3GAP1 (NM_012233.3: c.297del, p.Gln99fs) and another variation in ABCD1 (NM_000033: c.896A>G, p.His299Arg). Each of these mutations, which in silico predictions concluded as being pathogenic variations, affects a critical protein region. Both affected males presented a WARBM-compatible phenotype, with severe intellectual disability, severe developmental delay, postnatal growth delay, postnatal microcephaly, congenital bilateral cataracts, general hypotonia, and a thin corpus callosum without a splenium. However, intrafamilial clinical heterogeneity was present, since only the oldest child had large ears, microphthalmia, foot deformities, and a genital anomaly, and only the youngest child had microcornea. Despite the mutation identified in ABCD1, our patients did not have any X-linked symptoms of adrenoleukodystrophy disorder that are usually caused by ABCD1 mutations, which prompted our interest in clinical monitoring.
Conclusions: WES analysis of a consanguineous Tunisian family with WARBM revealed a novel variation in RAB3GAP1 (NM_012233.3: c.297del, p.Gln99fs) that is most likely pathogenic and allowed us to confirm the diagnosis of WARBM.
Keywords: ABCD1 protein, human; RAB3GAP1 protein, human; Warburg Micro syndrome; mutation; whole exome sequencing.
Copyright © 2022 Korean Neurological Association.