Fabrication and Excellent Performances of Bismuth Telluride-Based Thermoelectric Devices

ACS Appl Mater Interfaces. 2022 Mar 16;14(10):12276-12283. doi: 10.1021/acsami.1c24627. Epub 2022 Mar 2.

Abstract

The barrier layer between thermoelectric (TE) legs and electrodes has crucial impact on the electrothermal conversion efficiency of the TE device; however, the interfacial reaction of the Ni metal barrier layer with TE legs in traditional Bi2Te3-based devices is harmful to the device performance. Herein, a high-quality barrier layer of a Ni-based alloy has been fabricated on both n-type and p-type Bi2Te3-based TE legs by the electroplating method. The in situ XRD results indicate that the as-prepared Bi2Te3-based TE legs with a Ni-based alloy barrier layer remain stable even at 300 °C. The high-resolution high-angle annular dark field scanning transmission electron microscopy images reveal that the Ni-based alloy barrier layer has more excellent stability than that of the Ni metal barrier layer. The Bi2Te3-based TE devices with excellent structural and performance stabilities were assembled with the as-grown high-performance n-type and p-type Bi2Te3-based leg with a Ni-based alloy barrier layer, which have lower internal resistance and higher cooling and power generation performances. A maximum cooling temperature difference over 65 K and a maximum cooling capacity of 55 W were obtained for the high-performance Bi2Te3-based TE devices. This work provides a new strategy for high-temperature applications of commercial Bi2Te3-based TE devices.

Keywords: barrier layer; bismuth telluride; interfacial reaction; thermal stability; thermoelectric device.