Melatonin reduces muscle damage, inflammation and oxidative stress induced by exhaustive exercise in people with overweight/obesity

Physiol Int. 2022 Mar 3. doi: 10.1556/2060.2022.00126. Online ahead of print.

Abstract

Background: Intense physical exercise leads to inflammation, oxidative stress and muscle damage, and these responses are of greater magnitude in people with obesity. Melatonin (MLT) is considered an endogenous antioxidant which may have beneficial effects against inflammation, oxidative stress and promote tissue repair after exercise. The aim of this study was to examine the effect of MLT on inflammatory parameters, oxidative stress and muscle damage in people with overweight/obesity after a high-intensity interval exercise (HIIE).

Methods: A total of 23 subjects with obesity (9 men and 14 women) age: 33.26 ± 9.81 years, BMI: 37.75 ± 8.87 kg.m-2 were randomized to participate in two experimental sessions: HIIE + Placebo and HIIE + MLT (3 mg). The HIIE protocol corresponds to 8 intervals of 1 min (90% of the maximal aerobic power (MAP)) alternating with 2 min recovery (45% of the MAP). Blood samples were drawn before and 5 min after each exercise session.

Results: MLT ingestion attenuated the increase of inflammation (C-reactive protein, white blood cells (P < 0.001, ηp2 = 0.45; for both) and Neutrophils (P < 0.01, ηp2 = 0.36)) and hepatic and muscle damage (Aspartate aminotransferase (P < 0.01, ηp2 = 0.25), Alanine aminotransferase (P < 0.01, ηp2 = 0.27) and Creatine kinase (P = 0.02, ηp2 = 0.23). MLT also attenuated the exercise induced lipid and protein peroxidation (i.e., Malondialdehyde (P = 0.03, ηp2 = 0.19) and AOPP (P < 0.001, ηp2 = 0.55)). Concerning the antioxidant status, MLT intake increased Thiol (P < 0.01, ηp2 = 0.26) and Catalase (P < 0.01, ηp2 = 0.32) and decreased Uric acid (P = 0.02, ηp2 = 0.2) and Total bilirubin (P < 0.01, ηp2 = 0.33).

Conclusions: MLT intake before HIIE reduced muscle damage by modulating oxidative stress and preventing overexpression of the pro-inflammatory mediators in people with obesity.

Keywords: inflammation; melatonin; obesity; oxidative stress; strenuous exercise.