Cell type-specific mechanism of Setd1a heterozygosity in schizophrenia pathogenesis

Sci Adv. 2022 Mar 4;8(9):eabm1077. doi: 10.1126/sciadv.abm1077. Epub 2022 Mar 4.

Abstract

Schizophrenia (SCZ) is a chronic, serious mental disorder. Although more than 200 SCZ-associated genes have been identified, the underlying molecular and cellular mechanisms remain largely unknown. Here, we generated a Setd1a (SET domain containing 1A) haploinsufficiency mouse model to understand how this SCZ-associated epigenetic factor affects gene expression in brain regions highly relevant to SCZ. Single-cell RNA sequencing revealed that Setd1a heterozygosity causes highly variable transcriptional adaptations across different cell types in prefrontal cortex (PFC) and striatum. The Foxp2+ neurons exhibit the most prominent gene expression changes among the different neuron subtypes in PFC, which correlate with changes in histone H3 lysine 4 trimethylation. Many of the genes dysregulated in Setd1a+/- mice are involved in neuron morphogenesis and synaptic function. Consistently, Setd1a+/- mice exhibit certain behavioral features of patients with SCZ. Collectively, our study establishes Setd1a+/- mice as a model for understanding SCZ and uncovers a complex brain region- and cell type-specific dysregulation that potentially underlies SCZ pathogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / metabolism
  • Histone-Lysine N-Methyltransferase / genetics
  • Histone-Lysine N-Methyltransferase / metabolism
  • Humans
  • Mice
  • Neurons / metabolism
  • Prefrontal Cortex / metabolism
  • Schizophrenia* / genetics
  • Schizophrenia* / metabolism

Substances

  • Histone-Lysine N-Methyltransferase
  • Nsccn1 protein, mouse
  • Setd1A protein, human