The recognition code between transcription factor (TF) amino acids and DNA bases remains poorly understood. Here, the determinants of TF amino acid-DNA base binding selectivity were identified through the analysis of crystals of TF-DNA complexes. Selective, high-frequency interactions were identified for the vast majority of amino acid side chains ('structural code'). DNA binding specificities were then independently assessed by meta-analysis of random-mutagenesis studies of Zn finger-target DNA sequences. Selective, high-frequency interactions were identified for the majority of mutagenized residues ('mutagenesis code'). The structural code and the mutagenesis code were shown to match to a striking level of accuracy (P = 3.1 × 10-33), suggesting the identification of fundamental rules of TF binding to DNA bases. Additional insight was gained by showing a geometry-dictated choice among DNA-binding TF residues with overlapping specificity. These findings indicate the existence of a DNA recognition mode whereby the physical-chemical characteristics of the interacting residues play a deterministic role. The discovery of this DNA recognition code advances our knowledge on fundamental features of regulation of gene expression and is expected to pave the way for integration with higher-order complexity approaches.
© The Author(s) 2022. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.