Objectives: The antenatal phenotypic spectrum of Noonan Syndrome (NS) requires better characterization.
Methods: This multicenter retrospective observational included 16 fetuses with molecularly confirmed NS admitted for fetopathological examination between 2009 and 2016.
Results: Among 12 pathogenic variants (PV) in PTPN11 (80%), 5 (42%) fell between position c.179 and c.182. Ultrasound showed increased nuchal translucency (n = 13/16, 93%), increased nuchal fold after 15 weeks of gestation (n = 12/16, 75%), pleural effusions (n = 11/16, 69%), polyhydramnios (n = 9/16, 56%), hydrops (n = 7/16, 44%), cardiovascular (n = 6/16, 38%) and cerebral (n = 4/16, 25%) anomalies. Fetopathological examination found dysmorphic features in all cases, cardiovascular anomalies (n = 12/15, 80%), pulmonary hypoplasia (n = 10/15, 67%), effusions (n = 7/15, 47%) and neuropathological anomalies (n = 5/15, 33%). Hydrops was significantly (p = 0.02) more frequent in the four fetuses with RIT1, NRAS and RAF1 PV versus the 12 fetuses with PTPN11 PV.
Conclusions: Increased nuchal translucency and nuchal fold is common in NS. Noonan Syndrome antenatal phenotype showed high in utero fetal death, hydrops, prenatal pleural effusion and pulmonary hypoplasia, although the inclusion of only deceased fetuses will have selected more severe phenotypes. Non-specific cardiovascular and neurological abnormalities should be added to NS antenatal phenotype. Next generation sequencing will help detect more genotypes, clarifying the prenatal phenotype and identifying genotype-phenotype correlations.
© 2022 John Wiley & Sons Ltd.