Proteolysis is essential throughout life, and as more proteases are characterized, our understanding of the roles they play continues to expand. Among other things, proteases are critical for protein turnover and quality control, the activation or inactivation of some enzymes, and they are integral components of signal transduction pathways. This review focuses on a family of proteases in bacteria known as the carboxyl-terminal processing proteases, or CTPs. Members of this family occur in all domains of life. In bacteria, CTPs have emerged as important enzymes that have been implicated in critical processes including regulation, stress response, peptidoglycan remodeling, and virulence. Here, we provide an overview of the roles that CTPs play in diverse bacterial species, and some of the underlying mechanisms. We also describe the structures of some bacterial CTPs, and their adaptor proteins, which have revealed striking differences in arrangements and mechanisms of action. Finally, we discuss what little is known about the distinguishing features of CTP substrates and cleavage sites, and speculate about how CTP activities might be regulated in the bacterial cell. Compared with many other proteases, the study of bacterial CTPs is still in its infancy, but it has now become clear that they affect fundamental processes in many different species. This is a protease family with broad significance, and one that holds the promise of more high impact discoveries to come.
Keywords: carboxyl-terminal processing protease; cell envelope; cell wall hydrolase; gene regulation; stress response.