Principles of melting in hybrid organic-inorganic perovskite and polymorphic ABX3 structures

Chem Sci. 2022 Jan 20;13(7):2033-2042. doi: 10.1039/d1sc07080k. eCollection 2022 Feb 16.

Abstract

Four novel dicyanamide-containing hybrid organic-inorganic ABX3 structures are reported, and the thermal behaviour of a series of nine perovskite and non-perovskite [AB(N(CN)2)3] (A = (C3H7)4N, (C4H9)4N, (C5H11)4N; B = Co, Fe, Mn) is analyzed. Structure-property relationships are investigated by varying both A-site organic and B-site transition metal cations. In particular, increasing the size of the A-site cation from (C3H7)4N → (C4H9)4N → (C5H11)4N was observed to result in a decrease in T m through an increase in ΔS f. Consistent trends in T m with metal replacement are observed with each A-site cation, with Co < Fe < Mn. The majority of the melts formed were found to recrystallise partially upon cooling, though glasses could be formed through a small degree of organic linker decomposition. Total scattering methods are used to provide a greater understanding of the melting mechanism.