SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells

BMB Rep. 2022 Apr;55(4):198-203. doi: 10.5483/BMBRep.2022.55.4.191.

Abstract

As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels. [BMB Reports 2022; 55(4): 198-203].

Publication types

  • News

MeSH terms

  • Apoptosis
  • Cell Cycle
  • Cell Line, Tumor
  • Colorectal Neoplasms* / metabolism
  • Colorectal Neoplasms* / radiotherapy
  • Cytokines / metabolism
  • Humans
  • Radiation Tolerance
  • Reactive Oxygen Species / metabolism
  • Suppressor of Cytokine Signaling 1 Protein / genetics
  • Suppressor of Cytokine Signaling 1 Protein / metabolism
  • Suppressor of Cytokine Signaling Proteins / metabolism
  • Tumor Suppressor Protein p53*

Substances

  • Cytokines
  • Reactive Oxygen Species
  • SOCS1 protein, human
  • Suppressor of Cytokine Signaling 1 Protein
  • Suppressor of Cytokine Signaling Proteins
  • Tumor Suppressor Protein p53