Visible-light-driven photo-fenton-like catalytic activity and photoelectrochemical (PEC) performance of nitrogen-doped brownmillerite KBiFe2O5 (KBFO) are investigated. The effective optical bandgap of KBFO reduces from 1.67 to 1.60 eV post N-doping, enabling both enhancement of visible light absorption and photoactivity. The photo-fenton activity of KBFO and N-doped KBFO samples were analysed by degrading effluents like Methylene Blue (MB), Bisphenol-A (BPA) and antibiotics such as Norfloxacin (NOX) and Doxycycline (DOX). 20 mmol of Nitrogen-doped KBFO (20N-KBFO) exhibits enhanced catalytic activity while degrading MB. 20N-KBFO sample is further tested for degradation of Bisphenol-A and antibiotics in the presence of H2O2 and chelating agent L-cysteine. Under optimum conditions, MB, BPA, and NOX, and DOX are degraded by 99.5% (0.042 min-1), 83% (0.016 min-1), 72% (0.011 min-1) and 95% (0.026 min-1) of its initial concentration respectively. Photocurrent density of 20N-KBFO improves to 8.83 mA/cm2 from 4.31 mA/cm2 for pure KBFO. Photocatalytic and photoelectrochemical (PEC) properties of N-doped KBFO make it a promising candidate for energy and environmental applications.
© 2022. The Author(s).