Unraveling the Tropaeolum majus L. (Nasturtium) Root-Associated Bacterial Community in Search of Potential Biofertilizers

Microorganisms. 2022 Mar 17;10(3):638. doi: 10.3390/microorganisms10030638.

Abstract

Although Tropaeolum majus (nasturtium) is an agriculturally and economically important plant, especially due to the presence of edible flowers and its medicinal properties, its microbiome is quite unexplored. Here, the structure of the total bacterial community associated with the rhizosphere, endosphere and bulk soil of T. majus was determined by 16S rRNA amplicon metagenomic sequencing. A decrease in diversity and richness from bulk soil to the rhizosphere and from the rhizosphere to the endosphere was observed in the alpha diversity analyses. The phylum Proteobacteria was the most dominant in the bacteriome of the three sites evaluated, whereas the genera Pseudomonas and Ralstonia showed a significantly higher relative abundance in the rhizosphere and endosphere communities, respectively. Plant growth-promoting bacteria (236 PGPB) were also isolated from the T. majus endosphere, and 76 strains belonging to 11 different genera, mostly Serratia, Raoultella and Klebsiella, showed positive results for at least four out of six plant growth-promoting tests performed. The selection of PGPB associated with T. majus can result in the development of a biofertilizer with activity against phytopathogens and capable of favoring the development of this important plant.

Keywords: Tropaeolum majus; bacterial community; biofertilizer; nasturtium; plant growth-promoting bacteria; root.